
Black magic: xnor’s 43-byte Python answer to
“Triangular Lattice Points close to the Origin”

Lynn

This document is a proof that xnor’s 43-byte Python answer to “Triangular
Lattice Points close to the Origin” is correct, and an explanation of how it
computes what it does.

To start with, we need to define Eisenstein integers. These are complex
numbers of the form x+yω where x, y ∈ Z and ω = e2πi/3, the primitive third
root of unity. These numbers are arranged on a triangular lattice exactly like
the one in the PPCG question. (You can find a nice image on Wikipedia.)

We can compute the norm of an Eisenstein integer, i.e. the squared1 Eu-
clidean distance from the origin, in much the same way that we do so for
other complex numbers:

N(z) = |z|2 = z · z = (x+ yω)(x+ yω)

= x2 + xy(ω + ω) + y2(ωω)

= x2 − xy + y2.

The PPCG question as it is asked is then equivalent to this:

Given N , how many Eisenstein integers are there with norm less than
or equal to N2?

Which is furthermore equivalent to this:

How many ways are there to write N in the form X2 −XY + Y 2, for
integers X,Y ?

1Yes: in number theory, norm refers to the square of what you might know as the norm
from analysis or linear algebra. It’s quite confusing.

1



To answer this question, we’ll need some facts about Eisenstein integers that
I won’t prove in detail:2

• The Eisenstein integers form a unique factorization domain. This
means that we can uniquely factor any Eisenstein integer into irre-
ducible elements pi and a unit u. The units are the Eisenstein inte-
gers that have a multiplicative inverse: {±1,±ω,±ω}. The irreducible
elements are called Eisenstein primes: they cannot be broken down
into a product of two non-units. For example, 2 + ω is an Eisenstein
prime, but 7 = (3 + ω)(3 + ω) is not.

• Every ordinary prime congruent to 2 modulo 3 is an Eisenstein prime.

• Every ordinary prime congruent to 1 modulo 3 can be factored into

(x+ yω)(x+ yω)

for some integers x and y.

Now we can get started counting them.

Lemma (xnor–Legendre). Let N be a positive integer. The number of
Eisenstein integers with norm N is given by

R(N) := 6(d1 − d2),

where dr is the number of divisors of N congruent to r mod 3.

Equivalently, N can be written in the form

X2 −XY + Y 2,

for integers (X,Y ), in exactly R(N) different ways.

(The proof below is an adaptation of a proof, given in Chapter 36 of Joseph
H. Silverman’s A Friendly Introduction to Number Theory, of Legendre’s
“Sum of Two Squares Theorem”, which states that N can be written as a
sum of two squares in exactly

R(N) = 4(d1 − d3)

different ways, with dr the number of divisors of N congruent to r mod 4.)
2Okay, I actually don’t know how to prove these facts, either; I’m not a very skilled

ring theorist. But I read them on Wikipedia so they must be true.
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Proof. We begin by factoring N into a product of ordinary primes:

N = 3t pe11 pe22 · · · perr︸ ︷︷ ︸
primes ≡ 1 mod 3

· qf11 qf22 · · · qfss︸ ︷︷ ︸
primes ≡ 2 mod 3

.

Then we factor N into a product of Eisenstein primes. The integer 3 factors
as 3 = (2+ω)(2+ω). As stated earlier, each pi factors as (xi+yiω)(xi+yiω),
and the qi are Eisenstein primes themselves.

We now set

N = X2 −XY + Y 2 = (X + Y ω)(X + Y ω),

intending to count the solutions (X,Y ). Here, X + Y ω and X + Y ω are
composed of the prime factors of N , and each prime that appears in one
of their factorizations must have its complex conjugation appearing in the
other, as they are complex conjugates.3

If any of the fi is odd, then there is no way at all to evenly distribute factors
of qi among X + Y ω and its conjugation, so R(N) = 0. For the remainder
of the proof, suppose that all of the fi are even.

Every way to write N as X2 −XY + Y 2 corresponds to a possible value of
X+Y ω. So we will expand X+Y ω into factors, and count how many choices
we can make. It factors into a unit u ∈ {±1,±ω,±ω} and some primes πi

so that u(
∏

πi)u(
∏

πi) = N . We get something like this:

X + Y ω = u(2 + ω)t
(
(x1 + y1ω)

z1(x1 + y1ω)
e1−z1

)
· · ·(

(xr + yrω)
zr(xr + yrω)

er−zr
)
q
f1/2
1 · · · qfs/2s ,

where u is a unit and the exponents zi satisfy 0 ≤ zi ≤ ei.

Counting all the ways to vary u and zi, we find

# possible values of (X + Y ω) = R(N) = 6(e1 + 1) . . . (er + 1).

So far we have shown:

R(N) =

{
6(e1 + 1) . . . (er + 1) if fj all even,
0 otherwise.

3If X + Y ω = up1 . . . pn, then u · p1 . . . pn = up1 . . . pn = X + Y ω = X + Y ω, and
factorizations are unique. So if pi occurs in X+Y ω then pi necessarily occurs in X+Y ω.
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It remains to show that this equals 6(d1 − d2). Recall our factorization of N
into primes:

N = 3t pe11 pe22 · · · perr︸ ︷︷ ︸
primes ≡ 1 mod 3

· qf11 qf22 · · · qfss︸ ︷︷ ︸
primes ≡ 2 mod 3

.

We proceed by induction on s. If s = 0, then N = 3tpe11 . . . perr and every
divisor d = pe11 . . . perr ̸≡ 0 (mod 3) of N is congruent to 1 modulo 3. By
varying the exponents we can make this many choices:

d1 − d2 = d1 − 0 = (e1 + 1) · · · (er + 1).

Now let N be divisible by q for some prime q ≡ 2 (mod 3), and assume that
we have completed the proof for all numbers having fewer 2 modulo 3 prime
divisors than N . Let qf be the highest power of q dividing N , so N = qfn
with f ≥ 1 and q - n.

If f is odd, the divisors of N that are ̸≡ 0 (mod 3) are the numbers

qid, with 0 ≤ i ≤ f , and d ̸≡ 0 (mod 3) dividing n.

Thus each divisor d of n gives rise to exactly f + 1 divisors of N , of which
half are ≡ 1 (mod 3) and half are ≡ 2 (mod 3). Thus d1(N)− d2(N) = 0.

If f is even, that very same logic applies to the divisors qid that have ex-
ponents 0 ≤ i ≤ f − 1, so we are left to consider the divisors of N of the
form qfd. The exponent f is even, so that qf ≡ 1 (mod 3) and hence qfd
contributes to d1 if d ≡ 1 (mod 3) and to d2 if d ≡ 2 (mod 3). In other
words,

(d1 for N)− (d2 for N) = (d1 for n)− (d2 for n).

By the induction hypothesis, our proof is complete:

d1 − d2 =

{
(e1 + 1) . . . (er + 1) if fj all even,
0 otherwise.

= R(N)/6.

This lemma gives us a formula we can use to answer the PPCG question:
there is obviously one Eisenstein integer of norm 0, namely 0+0ω (the origin
of the lattice), and for all k > 0 there are R(k) Eisenstein integers of norm k.
So we have to compute 1+

∑N2

k=1R(k). It turns out that there is a very clever
way to do this!

4



Claim (Rewriting the sum). The sum 1 +
∑n2

k=1R(k) equals

1 + 6
∞∑
i=0

(⌊
n2

3i+ 1

⌋
−

⌊
n2

3i+ 2

⌋)
. (1)

The proof here follows an argument given in Geometry and the Imagination
by David Hilbert and Stephan Cohn-Vossen, pp. 37–38. Again, that proof
concerns the Gauss circle problem (on a square lattice), but we can easily
adapt it to our triangular case.

Proof. We take a new perspective on the summation. Instead of iterating
over all 1 ≤ k ≤ n2 and counting divisors of each k, we can iterate over all
possible divisors d, and count how many times d occurs as a divisor in any
of the positive integers k up to n2.

This is an easier question: d will occur as many times as there are multiples
of it that do not exceed n2, that is, ⌊n2/d⌋ times. So we have

n2∑
k=1

d1(k) =
∞∑
i=0

⌊
n2

3i+ 1

⌋
and

n2∑
k=1

d2(k) =
∞∑
i=0

⌊
n2

3i+ 2

⌋
from which the formula follows.

Claim. Equation (1) is computed by the Python 2.7 function

f=lambda n,a=1:n*n<a/3or n*n/a*6-f(n,a+a%3).

Proof. Note that instead of summing to ∞, we can sum until the result of the
floor function will always be 0, which is when 3i+1 > n2. Thus, a relatively
straightforward translation of (1) is:

f=lambda n,i=0:1 if 3*i>n*n else
n*n/(3*i+1)*6-n*n/(3*i+2)*6+f(n,i+1)

We use or to golf down the base case:

f=lambda n,i=0:3*i>n*n or
n*n/(3*i+1)*6-n*n/(3*i+2)*6+f(n,i+1)

5



Now, we apply a clever substitution: we can replace i=0 by a=1 then add
a%3 to a every iteration to run through the values 1, 2, 4, 5, 7, 8, . . . Then we
could add a constantly flipping “sign” value to get the alternating sum back:

f=lambda n,a=1,s=1:a>n*n or n*n/a*6*s+f(n,a+a%3,-s)

But an even shorter way to make the terms alternate is to “fold by -”:

f=lambda n,a=1:n*n<a/3or n*n/a*6-f(n,a+a%3)

The carefully chosen base case condition, n*n<a/3, will be met after an even
amount of sign flips, as a/3 (floor division) only changes every other term.
This is crucial, as we want to make sure the base case will contribute 1 to the
sum, not −1. (If you try replacing the base case by something like n*n<a,
you get lots of off-by-two errors.)
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